--- title: "Introduction to use of prcr for carrying a out two-step cluster analysis" author: "Joshua Rosenberg" date: "`r format(Sys.time(), '%d %B, %Y')`" output: html_document: default pdf_document: default vignette: | %\VignetteIndexEntry{Introduction} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Example In this example using the built-in to `prcr` dataset `pisaUSA15`. Specifically, we use composite variables for broad interest, enjoyment, instrumental motivation, and self-efficacy. More information on these and other items can be found at [this link](www.oecd.org/pisa/data/2015database/Codebook_CMB.xlsx). ```{r, echo = F} devtools::load_all(".") ``` ```{r, eval = F} library(prcr) ``` ```{r, eval = T} df <- pisaUSA15 m3 <- create_profiles_cluster(df, broad_interest, enjoyment, instrumental_mot, self_efficacy, n_profiles = 3) plot_profiles(m3, to_center = TRUE) ``` Other functions include those for carrying out comparing r-squared values and perfomring cross-validation. These are documented in the CRAN release and their versions in the in-development version will be documented prior to the CRAN release.